

Algebra objects in the representation category of Taft algebras

AMS Fall Central Meeting, 2025

Shashank Pratap Singh (Thesis advisor: Ryan Kinser)

The University of Iowa

This material is based upon work supported by the National Science Foundation under Award No. DMS-2303334 and Erwin-Peggy Kleinfeld Scholarship.

1. Introduction
2. Module Categories
3. Tensor Algebras in Tensor Categories
4. The Taft Algebra Case
5. Future Directions

Introduction

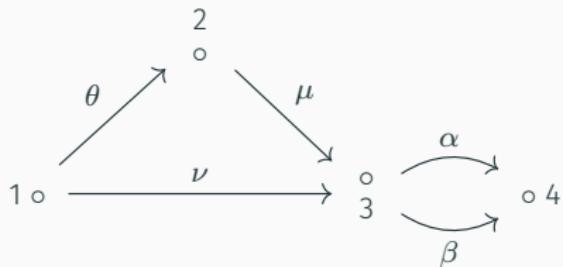
Quiver

A quiver Q is a directed graph, formally described by:

1. a collection of vertices Q_0 ,
2. a collection of edges (or arrows) Q_1 ,
3. maps $s : Q_1 \rightarrow Q_0$ and $t : Q_1 \rightarrow Q_0$ describing the source and target of an arrow.

Quiver

A quiver is a directed graph with a collection of vertices, a collection of arrows, and maps describing the initial and terminal vertices of an arrow.

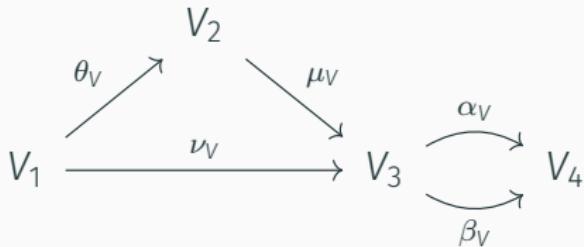


Representations of a Quiver

A representation V of a quiver Q is the following collection of data:

1. for every vertex $x \in Q_0$, a vector space V_x ,
2. for every arrow $x \xrightarrow{\alpha} y$ a linear map $\alpha_V : V_x \rightarrow V_y$.

Example:



Morphisms of Representations

A morphism of representations $f: V \rightarrow W$ is a collection of linear maps $f_x: V_x \rightarrow W_x$ such that the following diagram commutes

$$\begin{array}{ccc} V_x & \xrightarrow{\alpha_V} & V_y \\ f_x \downarrow & & \downarrow f_y \\ W_x & \xrightarrow{\alpha_W} & W_y \end{array}$$

for all arrows $x \xrightarrow{\alpha} y$ in the quiver Q .

Path Algebra

The path algebra $\mathbb{k}Q$ of a quiver Q is the algebra generated by paths in Q (including paths of length 0, that is, orthogonal idempotents e_x for each vertex $x \in Q_0$).

The algebra $\mathbb{k}Q$ is an associative algebra with unit $1 = \sum e_x$.

The vector space $\mathbb{k}Q_1$ generated by arrows in Q is a bimodule over the algebra $\mathbb{k}Q_0$ generated by the orthogonal idempotents.

The path algebra $\mathbb{k}Q$ can be viewed as the tensor algebra

$$\mathbb{k}Q_0 \oplus \mathbb{k}Q_1 \oplus \mathbb{k}Q_2 \oplus \dots$$

Theorem [Sch16]

The category of representations of a quiver Q is equivalent to the category $\mathbb{k}Q - \text{mod}$ of left modules over the path algebra $\mathbb{k}Q$.

Theorem

Let A be a finite dimensional associative algebra.

- A is Morita equivalent to some basic algebra A_b
- (Gabriel's theorem) There exists a quiver Q and an ideal $\mathcal{I} \subset \mathbb{k}Q$ such that $A_b \cong \mathbb{k}Q/\mathcal{I}$.

Setup: Let A and B be finite-dimensional \mathbb{k} -algebras.

Definition. A and B are Morita equivalent if there exist bimodules

$${}_B P_A \quad \text{and} \quad {}_A Q_B$$

such that

$$P \otimes_A Q \cong B \quad \text{as } (B, B)\text{-bimodules,}$$

$$Q \otimes_B P \cong A \quad \text{as } (A, A)\text{-bimodules.}$$

Induced Equivalences:

$$P \otimes_A - : \text{Mod-}A \longrightarrow \text{Mod-}B$$

$$Q \otimes_B - : \text{Mod-}B \longrightarrow \text{Mod-}A$$

are inverse equivalences of module categories.

Example: A and $M_n(A)$ are Morita equivalent for all $n \in \mathbb{Z}_+$.

Restatement of the above result:

Theorem

Let A be an algebra in $\text{vec}_{\mathbb{k}}$, the category of finite dimensional \mathbb{k} –vector spaces. There exists a quiver Q and an ideal $\mathcal{I} \subset \mathbb{k}Q$ such that the categories $A - \text{mod}$ and $\mathbb{k}Q/\mathcal{I} - \text{mod}$ are equivalent.

Are there any interesting generalizations of this result to arbitrary tensor categories?

Module Categories

An algebra in a tensor category \mathcal{C} is an object A in \mathcal{C} along with morphisms $m_A : A \otimes A \rightarrow A$ and $u_A : \mathbb{1} \rightarrow A$ such that the following diagrams are commutative:

The left diagram shows a commutative square with objects $A \otimes A \otimes A$, $A \otimes A$, $A \otimes A$, and A . The top horizontal arrow is $\text{id} \otimes m_A$, the right vertical arrow is m_A , the left vertical arrow is $m_A \otimes \text{id}$, and the bottom horizontal arrow is m_A .

The right diagram shows a commutative pentagon with objects $A \otimes A$, $\mathbb{1} \otimes A$, $A \otimes 1$, and A . The top horizontal arrow is $u_A \otimes \text{id}$, the right vertical arrow is m_A , the bottom horizontal arrow is $\text{id} \otimes u_A$, and the bottom-left and bottom-right diagonal arrows are both m_A .

Examples

1. The unit object $\mathbb{1}$ in any tensor category \mathcal{C} is an algebra.
2. An algebra in the category $\text{Rep}(H)$ is an H -module algebra.

Constructing Left Module Categories from Algebras: For an algebra A in an abelian monoidal category \mathcal{C} , construct **the** category $\text{Mod}_{\mathcal{C}}(A)$ of right A -modules in \mathcal{C} whose

Constructing Left Module Categories from Algebras: For an algebra A in an abelian monoidal category \mathcal{C} , construct the category $\text{Mod}_{\mathcal{C}}(A)$ of right A -modules in \mathcal{C} whose

- Objects are pairs (M, a_M) where M is an object in \mathcal{C}

$$a_M : M \otimes A \rightarrow M$$

is an action morphism.

Constructing Left Module Categories from Algebras: For an algebra A in an abelian monoidal category \mathcal{C} , construct the category $\text{Mod}_{\mathcal{C}}(A)$ of right A -modules in \mathcal{C} whose

- **Objects** are pairs (M, a_M) where M is an object in \mathcal{C}

$$a_M : M \otimes A \rightarrow M$$

is an action morphism.

- **Morphisms** are those morphisms of \mathcal{C} which commute with the action morphisms.

$$\begin{array}{ccc} M_1 \otimes A & \xrightarrow{f \otimes \text{id}} & M_2 \otimes A \\ \downarrow a_1 & & \downarrow a_2 \\ M_1 & \xrightarrow{f} & M_2 \end{array}$$

Tensor Algebras in Tensor Categories

Fix an exact algebra A in \mathcal{C} and an indecomposable A –bimodule M in \mathcal{C} . The \mathcal{C} –tensor algebra $T_A(M)$ is given by

$$T_A(M) = A \oplus M \oplus (M \otimes_A M) \oplus \dots$$

with multiplication given by the natural maps

$$(M^{\otimes_A n}) \otimes_A (M^{\otimes_A m}) \rightarrow M^{\otimes_A (n+m)}$$

and the unit map is induced from the injection $A \hookrightarrow T_A(M)$.

Restrict to the case when the algebra A is a direct sum

$$A = A_1 \oplus A_2$$

of indecomposable algebras A_1 and A_2 in \mathcal{C} .

Studying (A, A) –bimodules amounts to studying (A_i, A_j) –bimodules for $i, j \in \{1, 2\}$. The case where the algebras A_i ’s are semisimple and commutative as \mathbb{k} –algebras is studied in Kinser-Oswald [KO21] and Etingof-Kinser-Walton [EKW19].

I am currently investigating (A_i, A_j) –bimodules, where the algebras are not necessarily commutative or semisimple as \mathbb{k} –algebras.

The Taft Algebra Case

Taft Algebra H_l is generated by elements x and g subject to the relations

$$x^l = 0, \quad g^l = 1, \quad \text{and} \quad xg = q^{-1}gx$$

and comultiplication

$$\Delta(g) = g \otimes g, \quad \Delta(x) = x \otimes 1 + g \otimes x.$$

Theorem (Etingof and Ostrik) [EO03]

For any divisor d of l there is exactly one nonsemisimple indecomposable exact module category over $\text{Rep}(H_l)$ with d simple objects and exactly one one-parameter family of semisimple indecomposable module categories over $\text{Rep}(H_l)$ with d simple objects.

Let A be a simple H_l -module algebra, (i.e. contains no ideals invariant under the action of H_l) then the action of H_l on A allows us to introduce a filtration on A via

$$A_{-1} = 0 \quad \text{and} \quad A_i = \{a \in A \mid x \cdot a \in A_{i-1}\}.$$

This filtration has the following properties:

1. $x \cdot A_i \subset A_{i-1}$
2. $g \cdot A_i \subset A_i$
3. $A_i A_j \subset A_{i+j}$
4. $A_l = A$
5. for any $a \in A_i \setminus A_{i-1}$, $x \cdot a \in A_{i-1} \setminus A_{i-2}$
6. The algebra A_0 has no nontrivial g -invariant ideals.

The algebra A_0 is of the form $\mathbb{k}^{G/H}$ where H is a subgroup (unique, say, of order d) of $G = \langle g \rangle$. Let e_s , $s \in G/H$ denote the minimal central idempotents in A_0 .

When $A \neq A_0$, A_1 contains a unique element y such that

$$x(y) = 1, \quad y = \sum_{s \in G/H} e_{gs} y e_s, \quad \text{and} \quad g(y) = q^{-1} y$$

The algebra A is generated by A_0 and y . The relations above give us

$$y^l = \lambda \cdot 1_{A_0}, \quad \lambda \in \mathbb{k}^\times$$

Denote A by $A(d, \lambda)$.

Nonsemisimple Indecomposable

In the case of $A = A_0 = \mathbb{k}^{G/H}$, the module category $\text{Mod}_{\text{Rep}(H_l)}(A)$ is nonsemisimple indecomposable with d isomorphism classes of simple objects.

Semisimple Indecomposable

When $A = A(d, \lambda)$, the module category $\text{Mod}_{\text{Rep}(H_l)}(A)$ is semisimple indecomposable with d isomorphism classes of simple objects.

When $A = A_0 = \mathbb{k}^{G/H}$:

Let $G = \langle g \rangle$ and H be its unique subgroup of order d .

Then for $A = \mathbb{k}^{G/H}$ the action of H_l on A is given by:

1. $g \cdot (e_{g^j H}) = e_{g^{j+1} H}$ for all $g^j H \in G/H$
2. $x \cdot (e_{g^j H}) = 0$ for all $g^j H \in G/H$.

Compatibility of the two actions: Let M be a left H_l right A module. Then for all $m \in M$ and $a \in A$ we have

$$g(ma) = g(m)g(a)$$

$$x(ma) = x(m)a + g(m)x(a) = x(m)a$$

Nonsemisimple indecomposable $\text{Rep}(H_l)$ -module categories

Let $\mathcal{Q} = (Q, I)$ be a quiver with relations given by:

1. vertices, $Q_0 = \{i \mid i \in \mathbb{Z}/d\mathbb{Z}\}$,
2. arrows,

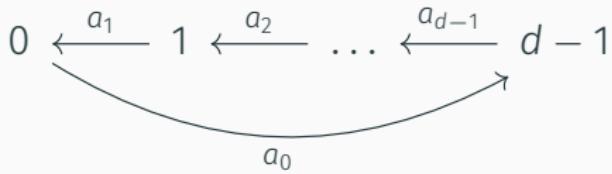
$$Q_1 = \{a_i \mid i \in \mathbb{Z}/d\mathbb{Z}\}$$

such that $s(a_i) = i$ and $t(a_i) = i - 1$,

3. subject to the following relations

$$a_{i-l+1} \circ \dots \circ a_{i-1} \circ a_i = 0$$

for all $i \in \mathbb{Z}/d\mathbb{Z}$.



Equivalent Category of Quiver Representation

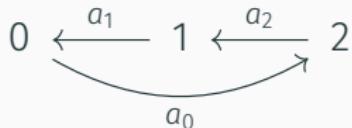
The category $\text{Rep}(\mathcal{Q})$ is equivalent to the module category $\text{Mod}_{\text{Rep}(H_l)}(A)$ where $A = \mathbb{k}^{G/H}$ and H is the unique subgroup of G of size d .

Properties of $\text{Rep}(\mathcal{Q})$

The category $\text{Rep}(\mathcal{Q})$ is nonsemisimple indecomposable.

Let $l = 6$ and $d = 3$, that is, $G \cong \mathbb{Z}/6\mathbb{Z}$, $H \cong \mathbb{Z}/3\mathbb{Z}$ and $G/H \cong \mathbb{Z}/2\mathbb{Z}$. The algebra $A = \mathbb{k}^{G/H} \cong \mathbb{k}^{\mathbb{Z}/2\mathbb{Z}}$.

Consider the quiver Q :



subject to the relations I :

$$(a_{i-2} \circ a_{i-1} \circ a_i)^2 = 0, \quad \forall i \in \mathbb{Z}/3\mathbb{Z}$$

Given a representation over (Q, I)

$$\begin{array}{ccccc} Z_0 & \xleftarrow{a_1} & Z_1 & \xleftarrow{a_2} & Z_2 \\ & \searrow a_0 & & \swarrow & \end{array}$$

For each $i \in \mathbb{Z}/3\mathbb{Z}$ and $j \in \mathbb{Z}/2\mathbb{Z}$, set $\mathcal{Z}_{(i,j)} = Z_i$. Then the vector space

$$\mathcal{Z} \cong \bigoplus_{i \in \mathbb{Z}/3\mathbb{Z}, j \in \mathbb{Z}/2\mathbb{Z}} \mathcal{Z}_{(i,j)}$$

carries a left H_l right A module structure.

The category $\text{Rep}(Q, I)$ is nonsemisimple. Simple objects are of the form

$$\begin{array}{ccccc} \mathbb{k} & \xleftarrow{0} & 0 & \xleftarrow{0} & 0 \\ & \searrow & & \swarrow & \\ & & 0 & & \end{array}$$

and its cyclic permutations. An example of an indecomposable object in $\text{Rep}(Q, I)$ is

$$\begin{array}{ccccc} \mathbb{k} & \xleftarrow{1} & \mathbb{k} & \xleftarrow{0} & 0 \\ & \searrow & & \swarrow & \\ & & 0 & & \end{array}$$

Suppose $A = \mathbb{k}^{G/H} = \langle e_i \rangle$ and $B = \mathbb{k}^{G/K} = \langle f_j \rangle$ with H and K of size d and d' respectively. Let V be an (A, B) –bimodule in Rep_{H_l} . Then we have

$$g(e_i V f_j) = e_{i+1} V f_{j+1}$$

and g cycles through $\text{lcm}\left(\frac{l}{d}, \frac{l}{d'}\right)$ many components before returning to the same one.

Let \mathcal{Q} be a quiver as above with $\gcd(d, d')$ many vertices.

Equivalent Quiver Category

The category $\text{Bimod}_{\mathcal{C}}(A, B)$ is equivalent to $\text{Rep}(\mathcal{Q})$.

The category $\text{Mod}_{\text{Rep}(H_l)}(A(d, \lambda))$ is semisimple and the goal is to find the canonical decomposition of objects into simple subobjects.

Let $V \in \text{Mod}_{\text{Rep}(H_l)}(A(d, \lambda))$ and $K = \ker(x)$.

The subspace K is invariant under the action of H_l and hence decomposes as eigensubspaces of $g^t \in H_l$.

$$K = \bigoplus_{i \in \mathbb{Z}/d\mathbb{Z}} K^{(i)}$$

Define

$$\overline{K^{(i)}} := \bigoplus_{r \in \mathbb{Z}/l\mathbb{Z}} K^{(i)} y^r$$

The subspace $\overline{K^{(i)}}$ is invariant under the action of both H_l and $A(d, \lambda)$.

Canonical Decomposition

The module V has the canonical decomposition

$$V = \bigoplus_{i \in \mathbb{Z}/d\mathbb{Z}} \overline{K^{(i)}}$$

into subobjects of $\text{Mod}_{\text{Rep}(H_l)}(A(d, \lambda))$.

Suppose $A = A(d, \lambda)$ and $B = A(d', \lambda')$. The module categories $(A)\text{Mod}_{\mathcal{C}}$ and $\text{Mod}_{\mathcal{C}}(B)$ are semisimple.

Semisimplicity

The category $\text{Bimod}_{\mathcal{C}}(A, B)$ is semisimple.

The category $\text{Bimod}_{\mathcal{C}}(A, B)$ is non-semisimple in the mixed case.

A similar description of categories of (A, B) –bimodules over generalized Taft algebras can be given.

Future Directions

Currently exploring:

- Interpret the cyclic quivers and their length- l relations as Galois coverings of the Taft module categories.
- Use these bimodules to study module categories and tensor algebras over $Rep(U_q(\mathfrak{b}))$

Thank You!

IOWA

Questions?

Thank you for your attention!

References

[EKW19] Pavel Etingof, Ryan Kinser, and Chelsea Walton.
“**Tensor Algebras in Finite Tensor Categories**”. In:
International Mathematics Research Notices 2021 (Dec.
2019). doi: [10.1093/imrn/rnz332](https://doi.org/10.1093/imrn/rnz332).

[EO03] Pavel Etingof and Viktor Ostrik.
Finite tensor categories. 2003. arXiv: [math/0301027](https://arxiv.org/abs/math/0301027)
[math.QA].

[KO21] Ryan Kinser and Amrei Oswald. “**Hopf actions of
some quantum groups on path algebras**”. In:
Journal of Algebra 587 (2021), pp. 85–117. doi: <https://doi.org/10.1016/j.jalgebra.2021.08.002>.

[Sch16] Ralf Schiffler. Quiver Representations. Mathematical Surveys and Monographs; volume 205. Springer Cham, 2016. ISBN: 978-3-319-09204-1.